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ABSTRACT
Given a bounded convex domain D in CV with smooth boundary and a
positive continuous function ¢ on D, it is proved that there is a holomor-
phic function f on D such that | flp is nonintegrable on M ND whenever M
is a real submanifold of a neighbourhood of a point of bD which intersects
bD transversely.

1. The result

In a recent paper [J] P. Jakobczak showed that given a bounded convex domain
D < CV with smooth boundary there is a function f holomorphic on D such
that f,,p|fldS = +oo for every complex submanifold M of a neighbourhood

of D which intersects bD transversely, where dS is the surface area measure.

In the present note we show that there are holomorphic functions on D with

more singular nonintegrability behavior at the boundary:

THEOREM 1.1: Let D C CV be a bounded convex domain with boundary of
class C! and let o be a positive continuous function on D. There is a holomorphic
function f on D with the following property: Let z € bD, let U & CN be an open
neighbourhood of z, let M be a real submanifold of U of class C! which meets

bD at z transversely, and let dS be the surface area measure on M. Then

/ |fldS = +oo.
MnD
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2. The function

Suppose that § C CN is a set such that there is a unique real hyperplane H
containing S and assume that H does not contain the origin. Given § > 0 we
denote by T(5,d) the union of translates of S in the direction perpendicular to
H away from the origin for a distance 7, 0 < 7 < 4, that is

7(5,6)= |J (m+9),

0<r<é

where n is the unit vector perpendicular to H pointing into the direction of the
component of CV \ H that does not contain the origin.

Suppose that D ¢ CV is a bounded convex domain with smooth boundary.
With no loss of generality assume that 0 € D. Let E; be a sequence of compact
polyhedral bodies,

Oelnt By CCInt B, cC---C | JE;=D.
Jj=1

LEMMA 2.1: For each j € N there are §; > 0, n; € N, compact polyhedral
bodies Pji, 1 S ) < nj, Pjo = E]', Pj,nj+1 = Ej+1, satisfying

Int Pj() CcC Int le CC---CClInt Pj,nj+17

and for each i, 1 < i < nj, a closed (2N — 1)-dimensional face Fj; of Pj; such
that

(21) T(Fji,éj) C Int }Dj‘i+1 (1 <1< nj)

and such that if T; = |J22, T(Fji,d;), then given a C' arc y: [0,1] — CV,
7([0,1)) C D, (1) € bD, such that v/ (1) is not tangent to bD at y(1) there are a
neighbourhood W of 7y in the C'topology of C'maps from [0,1] to CN such that
if \ € W is an arc, A\([0,1)) C D, A(1) € bD, then for each j > jo, A([0,1)) N T;
contains an arc whose length is at least §;.

As we shall see it will be essential that one can use the same jp for all arcs
sufficiently close to . It should cause no confusion that we are using the word
arc for injective continuous maps and also for their images.

Suppose that we have already proved Lemma 2.1.
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LEMMA 2.2: Let T;, j € N, be as in Lemma 2.1. Given a sequence M; of
positive numbers increasing to +oo there is a function f holomorphic on D such
that Re f(z) > M; (z € Tj) for each j € N.

Proof: Denote by < | > the Hermitian inner product on C¥. Fix j € N and
i, 1 <i<mnj, andlet 0 < M < oo and € > 0. Let H be the real hyperplane
containing F;;. Since 0 ¢ H it follows that there are a unit vector n € CV and
A > 0 such that

H={z2eCV: Re< zln>=)\}.

Write 1(z) =< z|n >. By the properties of Fj; and P;;_1, Y(T(F};,9;)) is a
compact set contained in {w € C: Rew > A} and ¥(P;;_1) is a compact set
contained in {w € C: Rew < A}. The one-variable Runge theorem gives a
polynomial p such that |p| < € on 9(P;;_1) and Rep > M on ¥(T(F};,9;)), so
Q = po ¢ is a complex valued polynomial on CV such that

(1) 1Q] < & on Py,

(ll) Re@ > M on T(Fji,Jj).
As in [GS1, p. 433] use the preceding fact and (2.1) and perform the induction
with respect to ¢, 1 < i < nj, to prove that given M < oo and ¢ > 0 there is a
complex valued polynomial ) such that

Ql<e onE;, Re@Q>M onTj.

Reasoning in the same way and performing the induction with respect to j we
complete the proof. |

3. Proof of Theorem 1.1, assuming Lemma 2.1

Let ¢ be a positive continuous function on D and let T}, é;, 7 € N, be as in
Lemma 2.1. Since each T is compact it follows that inf{p(2): z € T;} > 0, so
by Lemma 2.2 there is a function f holomorphic on D such that

(3.1) Sip(z)Ref(z2) 21 (2€Ty).

Let : [0,1] = CN be a smooth arc, ¥([0,1)) C D, ¥(1) € bD, v'(1) not tangent
to bD at y(1). By Lemma 2.1 there are a C'neighbourhood W of v and jp € N
such that for each arc A € W, A([0,1)) C D, A(1) € bD, and each j > jo, the set
A([0,1)) N T; contains an arc B; whose length is at least §;. By (3.1) it follows
that [ 5 pmax(Re f,0)ds > 1 where ds is the arclength. It follows that for all
such A,

(3.2) / pmax(Re f,0)ds 23 —jo (G > o).
M[OANNE;
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To prove Theorem 1.1 write ® = p max(Re f,0) and assume that z € bD, that
U is an open neighbourhood of z and that M is a real submanifold of U which
intersects bD at z transversely. Let m =dim M. Clearly 1 <m <2N. Ifm =1
then dS is the arclength and so [, ®dS = +oo by the preceding discussion.
So assume that m > 2. With no loss of generality assume that z = 0. Choose an
orthonormal basis in R?N = CV such that the first m coordinate axes z1,...,Zm
span the tangent space T to M at 0, and such that the coordinate axis =, is
transverse to bD at 0 with its positive direction pointing outside D.

Near 0, M is a graph over its tangent space T so we may assume that U =
Uy x Uy, Uy a neighbourhood of 0 in R™, Us a neighbourhood of 0 in R2¥-™ and
that there are smooth real functions @m41, . .., p2n on Uy, ¢;(0) = 0, (Dp; }(0) =
0 {(m+1<j<2N), such that

UNM =

{(1‘1, - ,l‘m,(pm+1(£l?1,. .. ,.’L‘m),. .. ,QDQN(.'L'l, Ca ,.’L‘m))i (ml, N ,.’I,‘m) € Ul}

By transversality, after shrinking U if necessary, we may assume that UNnMNbD
is a submanifold of M N U of real codimension 1. Since the coordinate axis x,,
is transverse to bD at 0 it follows that the tangent space Thnvnsp(0) is a real
hyperplane in T which can be written as a graph over

{z1,- -, Tm-1,0,...0): z; e R)1 < i <m—1}

and consequently, after shrinking U if necessary, we may assume that U; =
Uj x U}’ where U] is a neighbourhood of 0 in R™~}, U}’ = (—r,r) for some r > 0,
and that there are smooth functions ¥, ..., %5 on U; such that UNMNbD =

{(1'1,”~,mm—1,¢m($1,~--,$m—1), .,.,¢2N(x1,...,wm_1)) : (271,...,.7,‘7”__1) €
Ui} where 9;(0) = 0 (m < j < 2N). Since UNMNbD C UN M it follows

that "pj(ml’ ce axm—l) = (Pj(ml,- .- axm—l,’d)m(mla e axm—l)) (m+1 S] S 2N)
Obviously,

UnMND= {(.’El,...,xm_1,$m,¢m+1($1,... ,illm),...,(pgN(II:l,...:lJm))t
(T1,. - Tm-1) E UL, ~T < Ty < Yru(Z1,- -y Zm—1)}

The properties of E; imply that, after passing to a smaller U] if necessary, there
are jo and a sequence €;, j > jo, decreasing to zero, such that if

M; ={(z1,...,Zm, @m+1(Z15- -, Zm), - - -, P2N (1, - -+, Trm)):

(.’L‘l,. .. ,il)m_l) € U{,—r <Ty < ¢m(.’L‘1,. .. ,il,‘m_l) - Ej}
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then M; C MNUNE; and U2, M; =M nUND.

Let v(t) = ((0,...,O,t,(pm+1(0,...,O,t),...,(,OQN(O,...,O,t)) (=r <t < 0.
Then v(t) € D (~r < t < 0) and ¥'(0) = (0,...,0,1,0,...,0) (with 1 at the mth
entry) is not tangent to bD at 0 = (1).

The preceding discussion now implies that, after shrinking U] if necessary and
passing to a larger jg if necessary, we may assume that if A(zy,...,z5m-1;7) =
{(z1, Brme1, b Pme1 (@1, s Tme1, )y 02N (Z1,y -y Ty E)): — 7 <E <
Y (Z1, ..., Tm—1) — €;} then

/ Bds > j — jo((@1, - Tme1) € Ub > jo),
A(zl,.“,zm_l;j)

where ds is the arclength, that is,

wm(zl,...,wm_l)—e,-
/ D(Z1y. -, Bme1, Ty Pm4i (1o, Bm), - - Q2N (T1, .0, T )

-7

2N 2
16 % (52| | Vo2 o (e €U 2 0
. 8.’Cm 1y«-+94dm m 2] Jo 1y«cesddm—1 1J 2 Jo)-

j=m+l1

We may assume that the derivatives are uniformly bounded on U;. Thus, there
is a constant L < oo, independent of j, such that
(3.3)

dzm(:cl,...,:cm_.l)—sj
/ D(T1, o s Ty Pt 1 (X1, s Tm)s o @2N (T2, - - - T ) )Ty

—-r

Z (J —JO)/L (("I’.l,"'ymm) S Ulaj _>.]0)

M; ={(21,.--,Zm): (Z1,..-Tm-1) €U}, =1 < T < Ym(1,...,Tm_1) — €5}

5] 1o]
E = (0,...,0,1,0,...,0., Sg';fl(m,...,zm),..., g:v(acl,...,xm))

with 1 at the ith entry, 1 < i < m, and if g;j(z1,...,2m) = E;.Ej, then
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|det g;j(z1,...,Zm)| 2 1 ((21,...,2m) € Uy) so

/ ®dS
MA

2

:/_ B(21,. .., Ty Cm1(Z1, -, Tm)s - 02N (T, -, Zm))-
M;

I detgij(ml, .. .,l‘m),l/zdl'l s dry,

> /~ B(z1,. oy Ty Pmt1(Z1, -+, Zm)y - o, P2N (T, -+ - T ) )AL -+ - ATy
M;

Yo (T1,00m—1)—Ej
:/ [/ d)(xl,...,xm)dxm]dxl~--da:m_1
U

7
1 r

> L7H(j ~ jo) vol(U7).

Thus
/ ®dS = lim ®dS = +o0,
MNUND

j—=oo J p,

which implies that [, [fl¢dS = +oco. This completes the proof. 1

4. Proof of Lemma 2.1

To prove Lemma 2.1 we need the following lemma which strengthens [GS1,
Lemma 9.

LEMMA 4.1: Let k > 2, and let P C R* be a compact convex polyhedral body
containing the origin in its interior. Let K C Int P be a compact set and let V
be a neighbourhood of P. Let F C bP be a closed, (k — 1)-dimensional face of
P. There are a compact convex polyhedral body Q, a closed (k — 1)-dimensional
face S of Q and a é > 0 such that

HPCcIntQCQCV,

(if) T(S,d) C V,

(iil) if H is the hyperplane containing S and if A is a ray emanating from a
point of K and passing through F, then

ANT(H,8) = ANT(S, ),

that is, the segment A NT(H,§) is contained in T(S, d).

We need the following simple proposition whose proof we omit.
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PROPOSITION 4.1: Let K C R¥ be a compact subset of {z; < 0} and let F C
{z; = 0} be a nonempty compact convex polyhedral body in R*~1 such that
0 € Int F. Let K be the union of all rays emanating from K and meeting F.
Given r > 1, there is an € > 0 such that K N {z; =t} C Int(rF) + (¢,0,...,0)
foreacht, 0 <t <e.

Proof of Lemma 4.1: Observe first that the condition 0 € Int P is needed only for
the definition of 7'(S,d). As T'(S,d) in our context can be described differently,
assume, with no loss of generality, that 0 € IntF, that F C {z; = 0} and
Int P C {z; < 0}. Choose r > 1 so close to 1 that 7P C V. Thereisav > 0
such that (£,0,...,0) + 7P C V (0 < t < v). Let K be the union of all rays
emanating from K and passing through F. Passing to a smaller v if necessary
we may, by Proposition 4.1, assume that for each t, 0 <t < v, KN {z; =t} C
Int(rF) + (¢,0,...,0). Let @ = (v/3,0,...,0) +7P,let S = (v/3,0,...,0) +rF,
and let 6 = v/3. Then

7(5,6)= |J [¢t0,...,0)+rF].

v/3<t<2w/3

Now (i) and (ii) are clearly satisfied. To see that (iii) is satisfied let A be a
ray emanating from a point in K and passing through F. Then for each t > 0,
{z1 =t} N A is a point which, if v/3 <t < 2v/3, is contained in T'(S,d) by the
preceding discussion. This completes the proof. |

PROPOSITION 4.2: Let C C R* be a closed convex cone with vertex at the origin
and let y: [0,00) — R* be a C' path such that v(0) = 0 and 7'(t) € C (t > 0).
Then v(t) € C (t > 0).

Proof: Let T > 0. Then

T n B
AT) =/0 Y (t)dt =T. limZY(&)V'“—F],
k=1

where 0 = fp < & <t < -+ <tp_1 < & <tp, =T. The sum in the bracket is
a convex combination of ¥'(§;) € C, 1 < j < n so it belongs to C. Since C is a
closed cone it follows that 4(T) € C. This completes the proof. ]

Proof of Lemma 2.1: Let j €N, j > 2, and let ®;;, 1 <1 < nj, be the closed
(2N — 1)-dimensional faces of E;. By Lemma 4.1 there are §; > 0, compact
polyhedral bodies Pj;, 1 <i < nj, Pjp = Ej, Pj ;41 = Ejy1, satisfying

Int Py CC Int Pj1 CC Int Pj,nj-i-l;
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and for each i, 1 < < n;, a closed (2N —1)-dimensional face F}; of P;; such that
(2.1) holds and such that if A is a ray emanating from a point in E;_; and meeting
®;; for some 4, 1 < i < nj, and if Hj; is the hyperplane containing Fj; then
ANT(F};,6;) = ANT(Hj;,05). So, if z € ®;; for some i, 1 <i < ny, if V is the
union of all lines passing through 2 and meeting F;_; and if W is the component
of Int V which misses E;_; then WNT(Fj;,6;) = WNT(Hj;,0;). In particular,
W ~T(F};,d;) has two components Wy and W; and any arc connecting a point
in Wy with a point in W, must contain a subarc A contained in T'(F;, d;) with
endpoints in different boundary components of T'(Hj;, é;), that is, in two parallel
hyperplanes at the distance §;. Thus, the length of A is at least §;.

We show that Fj; and ; have the required properties. To see this, let y: [0, 1] —
CN be a C! arc, v([0,1)) C D, ¥(1) € bD, such that 4/(1) is not tangent to bD at
4(1). Denote by B the open unit ball in CV. Given ¢ > 0, denote by C. the closed
cone consisting of all rays emanating from the origin and meeting ' (1)-+¢B. Since
v'(1) is not tangent to bD at v(1) one can choose a neighbourhood U of v, € > 0,
r < 1 and vy € N such that for each arc A € U, A([0,1)) C D, A(1) € bD, for
each ¢, r < t < 1, each ray emanating from A(t) and contained in A{t) + (—Cs¢)
meets E,, and we have [N (t) —+v/(1){ < €. Passing to a smaller U if necessary
we may assume that there is a jo € N, jo > g, such that A(r) € Int Ej; for all
arcs A € U as above.

Let 7 > jo and let A be as above. Since A(r) € Int E;; and A(1) € bD it follows
that A([0,1)) meets bE;, so there are ¢, » < ¢ < 1, and 7, 1 < ¢ < ny, such
that A(t) € ®;;. Since X' (1) € C. (¢t < 7 < 1) it follows by Proposition 4.2 that
A7) € At) +Ce (t <7< 1), 80 A(T) € {A(t)} UInt[A(¢) + Csc]. The preceding
discussion now shows that A([t, 1)) NT}; contains an arc of length at least ;. This
completes the proof. n

8. Remarks

As in [J, GS2] it is easy to see that Theorem 1.1 holds if D cC CV is a strictly
pseudoconvex domain with C? boundary.
When proving Theorem 1.1 we actually proved that

(6.1) / ¢maxRe f,0}dS = +oo.
MnD

Thus, in Theorem 1.1, (1.1) could be replaced by (5.1).
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