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A B S T R A C T  

Given a bounded  convex domain  D in C g with  s m o o t h  b o u n d a r y  and  a 

posit ive cont inuous  funct ion  ~ on D,  it is proved t ha t  there  is a holomor-  

phic funct ion  f on D such t h a t  ].fifo is nonintegrable  on M M D  whenever  M 

is a real submani fo ld  of a ne ighbourhood  of a point  of  bD which intersects  

bD t ransversely.  

1. T h e  r e s u l t  

In  a recent  pape r  [J] P. J akobczak  showed tha t  given a bounded  convex doma in  

D c C N wi th  s m o o t h  b o u n d a r y  there  is a funct ion f ho lomorphic  on D such 

t h a t  fMnD tfl dS  = + c o  for every complex  submani fo ld  M of a ne ighbourhood  

of D which in tersects  bD t ransversely,  where dS is the  surface a rea  measure .  

In  the  present  note  we show tha t  there  are ho lomorphic  funct ions on D wi th  

more  s ingular  non in tegrab i l i ty  behavior  a t  the  bounda ry :  

THEOREM 1.1: Let D C C N be a bounded convex domain with boundary of 

class C 1 and let ~ be a positive continuous function on D. There is a holomorphic 

function f on D with the following property: Let z E bD, let U C C N be an open 

neighbourhood of z, let M be a real submanifold of U of class ~1 which meets  

bD at z transversely, and let dS be the surface area  measure  on M. Then 

f [floods = +c~. (1.1) 
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2. T h e  f u n c t i o n  

Suppose that  S C C N is a set such that there is a unique real hyperplane H 

containing S and assume that H does not contain the origin. Given 5 > 0 we 

denote by T(S,  6) the union of translates of S in the direction perpendicular to 

H away from the origin for a distance % 0 < T < 6, that is 

T(S, 5) = U (Tn+S), 
0<~-<6 

where n is the unit vector perpendicular to H pointing into the direction of the 

component of C N \ H that  does not contain the origin. 

Suppose that D C C N is a bounded convex domain with smooth boundary. 

With no loss of generality assume that 0 E D. Let Ej be a sequence of compact 

polyhedral bodies, 

,% 
0 E Int  E1 CC Int  E2 CC . . .  C U E j  = D.  

j = l  

LEMMA 2.1: For each j C N there axe 5j > O, nj E N, compact polyhedral 

bodies Pji, 1 < i < nj, Pjo = Ej,  Pj,nj+i = Ej+I, satisfying 

Int Pjo CC Int Pjl  CC "-- CC Int Pi,nj+l , 

and for each i, 1 < i < nj,  a dosed (2N - 1)-dimensionaI face Fji of Pji such 

that 

(2.1) T(Fji,  6j) C IntPj,i+l (1 < i < nj) 

nj and such that if  Tj = Ui~--I T ( F j i , S J ) ,  then given a C 1 arc q': [0, 1] --+ C N, 

9'([0, 1)) C D, 9'(1) E bV, such that 9/(1) is not tangent to bD at 9'(1) there are a 

neighbourhood W of g" in the Cltopology of Clmaps from [0, 1] to C N such that 

i f ~  e w is an arc, ~([0, 1)) C O, ~(1) E bO, then for each j > Jo, ~([0, 1)) n Tj 
contains an are whose length is at least 5j. 

As we shall see it will be essential that one can use the same j0 for all arcs 

sufficiently close to 9'. It should cause no confusion that we are using the word 

arc for injective continuous maps and also for their images. 

Suppose that  we have already proved Lemma 2.1. 
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Proof: Denote by < ] 

i, 1 < i  < n s, and let 

containing Fis. Since 0 

,~ > 0 such that  

LEMMA 2.2: Let Tj, j �9 N, be as in Lemma 2.1. Given a sequence Mj of 
positive numbers increasing to +co there is a function f holomorphic on D such 
that Re f(z) > M s (z �9 TS) for each j �9 N. 

> the Hermitian inner product on C g .  Fix j �9 N and 

0 < M < co and e > 0. Let H be the real hyperplane 

H it follows that there are a unit vector n �9 C g and 

Write r  = <  z]n >. 

compact set contained 

contained in {w �9 C: 

polynomial p such that 

Q = p o r is a complex 

(i) IQI < e on Ps#-I, 

H = {z �9 cN:  Re < zln >-- A}. 

By the properties of Fsi and PS#-I, ~(T(Fji, 5S) ) is a 

in {w �9 C: Rew > ~} and ~b(Ps,i_l) is a compact set 

Re w < )~}. The one-variable Runge theorem gives a 

IPl < e on r and Rep > M on r so 

valued polynomial on C N such that 

(ii) R e Q > M on T(Fji, hj). 
As in [GS1, p. 433] use the preceding fact and (2.1) and perform the induction 

with respect to i, 1 < i < nj, to prove that  given M < co and e > 0 there is a 

complex valued polynomial Q such that 

IQI<  onEs, R e Q > M  onTs. 

Reasoning in the same way and performing the induction with respect to j we 

complete the proof. | 

3. P r o o f  o f  T h e o r e m  1.1,  a s s u m i n g  L e m m a  2.1 

Let ~ be a positive continuous function on D and let Tj, ~j, j E N, be as in 

Lemma 2.1. Since each Tj is compact it follows that  inf{~(z): z E Tj} > 0, so 

by Lemma 2.2 there is a function f holomorphic on D such that  

(3.1) ~j~(z) Re f(z) > 1 (z e Tj). 

Let ")': [0, 1] -~ C N be a smooth arc, V([0, 1)) C D, 7(1) E bD, 7'(1) not tangent 

to bD at 7(1). By Lemma 2.1 there are a Clneighbourhood W of 7 and J0 �9 N 

such that  for each arc ,~ �9 W, A([0, 1)) C D, A(1) �9 bD, and each j >_ j0, the set 

A([0, 1)) A Tj contains an arc f~j whose length is at least 5j. By (3.1) it follows 

that  J'~j ~ max(Re f, O)ds > 1 where ds is the arclength. It follows that  for all 

such ,~, 

f ~max(Ref ,  O)ds > j - jo (J ~_ jo). (3.2) 
Jx ([o,1))nEj 
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To prove Theorem 1.1 write �9 -- ~omax(Re f ,0 )  and assume tha t  z E bD, tha t  

U is an open neighbourhood of z and that  M is a real submanifold of U which 

intersects bD at z transversely. Let m = dim M.  Clearly 1 _< m _< 2N. If m = 1 

then dS  is the arclength and so fMnD OdS = +c~ by the preceding discussion. 

So assume tha t  m >_ 2. Wi th  no loss of generality assume that  z = 0. Choose an 

or thonormal  basis in R sN = C N such that  the first m coordinate axes x l , .  �9 Xm 

span the tangent  space T to M at 0, and such tha t  the coordinate axis Xm is 

t ransverse to bD at 0 with its positive direction pointing outside D. 

Near 0, M is a graph over its tangent  space T so we may assume tha t  U = 

U1 • Us, U1 a neighbourhood of 0 in R m, Us a neighbourhood of 0 in I1~ sN- '~  and 

tha t  there are smooth  real functions ~om+l, . . . ,  ~2N on U1, ~j (0) = 0, (D~j)(O) = 

0 (m + 1 < j _< 2N),  such tha t  

U M M =  

{(Xl,. . . ,Xm,qOm+I(Xl,. . . ,Xm),.. . ,~02N(Xl,. . . ,Xm)): (Xl, . . . ,Xm) C U1}. 

By transversality, after shrinking U if necessary, we may assume tha t  U M M M bD 

is a submanifold of M Cl U of real codimension 1. Since the coordinate axis Xm 

is transverse to bD at 0 it follows tha t  the tangent  space TMnUnbD(O) is a real 

hyperplane in T which can be writ ten as a graph over 

{ X l , . . . , X m - I , 0 , . . . O ) :  Xi E R, 1 < i < m - -  1} 

and consequently, after shrinking U if necessary, we may assume tha t  U1 = 

U~ x U[' where U~ is a neighbourhood of 0 in R m-1 , U~' = ( - r ,  r) for some r > 0, 

and tha t  there are smooth  functions e r a , . . . ,  ~)2N on V~ shah tha t  U M M M bD = 

{(Xl,...,Xm_l,~)m(Xl,...,Xrn_l), . . . ,•2N(Xl,. . . ,Xm-1)): (Xl,...,Xm--1) e 
U~} where Cj(0) = 0 (m <_ j < 2N).  Since U f 3 M N b D  C U M M  it follows 

tha t  C j ( x a , . . . , X m - 1 )  - ~Oj(Xl , . . . ,X~- - I , r  "" ,Xm-1)) ( m + l  <_j _< 2N).  

Obviously, 

U ~ M N D = { ( x l , . . . ,  xm-1, xm, ~ m + l ( X l , . . . ,  Xra) , . . . ,  ~02N(Xl,... Xrn)): 

(Xl , . . . ,Xm-1)  E V i , - r  < x m < ~)m(Xl , . . . ,Xm-1)} .  

The  propert ies of Ej  imply that ,  after passing to a smaller U~ if necessary, there 

are j0 and a sequence e j,  j >_ j0, decreasing to zero, such tha t  if 

(Xl,...,Xm-1) E U ~ , - r  < x m '( r  - E j }  
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OG 
then Mj C M n U (3 Ej and Uj=jo Mj = M n U A D. 

Let ?(t) = ( (0 , . . . , 0 ,  t , ~m+l (0 , . . . , 0 ,  t ) , . . . , p 2 N ( 0 , . . . , 0 ,  t)) (--r < t < 0). 

Then 7(t) �9 D ( - r  < t < 0) and 3/(0) = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 )  (with 1 at the m t h  
entry) is not tangent to bD at 0 = 3'(1). 

The preceding discussion now implies that,  after shrinking U[ if necessary and 
passing to a larger jo if necessary, we may assume that  if A(x l , . . .  , xm-1 ; j )  = 
{ (Xl , . . . , x ,~ - l ,  t ,~m+l(X l , . . . ,X ,~ - l , t ) , . . . , qO2N(Xl , . . . ,Xm- l , t ) ) :  -- r < t < 

r  , X m - 1 )  - -  e j }  then 

fA q~ds > j -jo((xl, . . .  ,Xm-1) �9 U~,j > jo), 
( X l  . . . . .  X m - 1 ; j )  

where ds is the arclength, that  is, 

r ..... xm_,)-~, ~ ( X l , . . . ,  xm-1, zm, ~ m + i ( X l , . . . ,  x m ) , . . . ,  ~ 2N( Zl , . . . ,  ~ ) )  

r 

2N [ 0 ~ j  t 2  1/2 
. [ 1 +  E [Ox.~ (xl '  - ' " ] >__ j j0 �9 >_ 3o). 

j = m + l  

We may assume that  the derivatives are uniformly bounded on U1. Thus, there 
is a constant L < oc, independent of j ,  such that  
(3.3) 

f _ ~ P ~ ( x l  ( ~ ( X l ,  * " " , X m , ~ m + l  ( X l ,  " " " , X m ) ,  " ' " , ~ 2 N (  ( X l ,  " " * , xm) )dx.~ 
Xm--1)--~j 

> (j - j o ) / L  ( (X l , . . . , xm)  �9 UI, j  > jo). 

Write 

/~/j = { ( X l , . . . , X m ) :  ( X l , . . . X m - 1 )  �9 U ~ , - r  < X m  < ~ b m ( X l , . . . , X m - 1 ) - ~ j } .  

If 

E i = ( 0 ,  . ,0 ,1 ,0 ,  , 0 , ~ ( x l , . . .  xm), OqO2N ,xm))  
. . . . .  , . . . ,  0x-- -~(xl , . . .  

with 1 at the i th entry, 1 _< i _< m, and if g i j ( X l , . . . , X m )  = Ei.Ej,  then 
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I d e t g i j ( X l , . . . , x ~ ) l  >_ 1 ( (Xl , . . .  , X m )  E U1) so 

M~ ~dS 

---- / i -  ( I ) ( x l , . . . , X m , ( ~ m T I ( X l , . . . , X m ) , . . . , ~ 2 N ( X l , . . . , X m ) ) .  
JM J 

�9 [ det gij (xi, �9  x,~)[ 1/2dx1... dxm 

~-- /'](4~ ( ~ ( X l '  " " " ' X m '  ~mTi  ( X l , . ' ' ,  X m ) ,  . . . , ~ 2 N ( X l ,  . . . , xm) )dxl " " dxm 
- - j  

_~/U, [/_r ~(xi,...,xm)dxm]dXl...dXm_l 
>_ L- I (J  - Jo) vol(U~). 

Thus 

M ~dS = l i m / M  ~dS = +co, 
M U N D  J ~  

which implies that  fMnD [f[~dS = +co. This completes the proof. I 

4. P r o o f  o f  L e m m a  2.1 

To prove Lemma 2.1 we need the following lemma which strengthens [GS1, 

Lemma 9]. 

LEMMA 4.1: Let k > 2, and let P C ]~k be a compact convex polyhedral body 

containing the origin in its interior. Let K C Int P be a compact set and let V 

be a neighbourhood of P. Let F c bP be a closed, (k - 1)-dimensional face of 

P.  There are a compact convex polyhedral body Q, a dosed ( k - 1)-dimensional 

face S of Q and a 6 > 0 such that 

(i) P c I n t Q c Q c V ,  
(ii) T(S, 6) C V, 
(iii) i f  H is the hyperplane containing S and if  A is a ray emanating from a 

point of K and passing through F, then 

A M T(H, 5) -- A M T(S, 5), 

that is, the segment A M T(H, 6) is contained in T(S, 5). 

We need the following simple proposition whose proof we omit. 
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PROPOSITION 4.1: Let K C ]~k be a compact subset of{x1 < 0} and let F C 
{xl = 0} be a nonempty compact convex polyhedral body in l~ k-1 such that 

0 6 Int F. Let K be the union of all rays emanating from K and meeting F. 

Given r > 1, there is an e > 0 such that K n {Xl : t} C In t ( rF)  + (t, 0 , . . . ,  0) 

for each t, 0 < t < e. 

Proof of Lemma 4.1: Observe first that  the condition 0 6 Int P is needed only for 

the definition of T(S, 6). As T(S, 6) in our context can be described differently, 

assume, with no loss of generality, that 0 E In tF ,  that F C {xl = 0} and 

I n t P  c {xl < 0}. Choose r > I so close to 1 that rP  c V. There is a v > 0 

such that  ( t , 0 , . . . , 0 ) + r P  C V (0 < t <_ v). Let /4 be the union of all rays 

emanating from K and passing through F.  Passing to a smaller v if necessary 

we may, by Proposition 4.1, assume that for each t, 0 < t _< u , / 4  N {Xl = t} C 

In t ( rF)  + (t, 0 , . . . , 0 ) .  Let Q = ( v / 3 , 0 , . . . , 0 )  + r P ,  let S = ( u / 3 , 0 , . . . , 0 )  + r F ,  

and let 5 = u/3. Then 

T(S, 6) -- U [(t, 0 , . . . ,  0) + rF]. 
u/3~t~2u/3 

Now (i) and (ii) are clearly satisfied. To see that (iii) is satisfied let A be a 

ray emanating from a point in K and passing through F.  Then for each t > 0, 

{Xl - t} N A is a point which, if y/3 < t < 2~/3, is contained in T(S, 6) by the 

preceding discussion. This completes the proof. | 

PROPOSITION 4.2: Let C C R k be a closed convex cone with vertex at the origin 
and let 7: [0, co) -+ ]Rk be a C 1 path such that 7(0) = 0 and 7'(t) E C (t >__ 0). 

Then ~/(t) e C (t >_ 0). 

Proof'. Let T > O. Then 

f0  T n t "/(T) = "y'(t)dt= T. l i m E ~ / ( ~ k ) [  - k - t k - 1  ] ;f j '  
k=l 

where 0 = to < ~1 < tl  < . . .  < tn-1 < ~n < t,~ = T. The sum in the bracket is 

a convex combination of 7'(~j) E C, 1 <_ j _< n so it belongs to C. Since C is a 

closed cone it follows that  7(T) E C. This completes the proof. | 

Proof of Lemma 2.1: Let j E N, j _> 2, and let (I)ji, 1 < i < nj, be the closed 

(2N - 1)-dimensional faces of Ej. By Lemma 4.1 there are 6j > 0, compact 

polyhedral bodies Pji, 1 < i < nj, Pjo = Ej, Pj,nj+l = Ej+I, satisfying 

Int Pj0 CC Int Pjl  CC IntPj,nj+l, 



202 J. GLOBEVNIK Isr. J. Math. 

and for each i, 1 < i < nj, a closed (2N - 1)-dimensional face Fji of Rji such that 

(2.1) holds and such that ifA is a ray emanating from a point in E j -1  and meeting 

~ji  for some i, 1 < i < nj, and if Hji is the hyperplane containing Fji then 

A n T(Fji, 5j) = A A T(Hji, 52). So, if z E ~j~ for some i, 1 < i < nj, if V is the 

union of all lines passing through z and meeting Ej-1 and if W is the component 

of Int V which misses Ej-1  then W N T(Fji, 5j) = W A T(Hji, hi). In particular, 

W \ T(Fji, 5j) has two components W1 and W2 and any arc connecting a point 

in W1 with a point in W2 must contain a subarc A contained in T(F~j, ~j) with 

endpoints in different boundary components of T(Hj~, 5j), that is, in two parallel 

hyperplanes at the distance 5j. Thus, the length of A is at least 53. 

We show that  Fj~ and 5j have the required properties. To see this, let 7: [0, 1] ~-~ 

C N be a C 1 arc, 7([0, 1)) C D, ~,(t) E bD, such that ~/(1) is not tangent to bD at 

7(1). Denote by ]~ the open unit ball in C y .  Given ~ > 0, denote by C~ the closed 

cone consisting of all rays emanating from the origin and meeting ~ (1 )+e~ .  Since 

7'(1) is not tangent to bD at ~(1) one can choose a neighbourhood U of % e > 0, 

r < 1 and ~0 E N such that for each arc ~ E U, A([0,1)) C D, ~(1) E bD, for 

each t, r < t < 1, each ray emanating from A(t) and contained in A(t) + (--C3r 

meets E~o and we have [A'(t) - 7'(1)I < e. Passing to a smaller U if necessary 

we may assume that there is a J0 E N, j0 > u0, such that A(r) E Int E3o for all 

arcs A E U as above. 

Let j > j0 and let ~ be as above. Since A(r) E Int Ejo and A(1) E bD it follows 

that ),([0,1)) meets bE~, so there are t, r < t < 1, and i, 1 < i < ny, such 

that A(t) E Cj~. Since A'(-r) E C~ (t < T < 1) it follows by Proposition 4.2 that  

A(T) E A(t) + C, (t < T < 1), SO )~(T) E {A(t)} U Int[A(t) + C3,]. The preceding 

discussion now shows that $([t, 1)) nTj  contains an arc of length at least Aj. This 

completes the proof. | 

5. R e m a r k s  

As in [J, GS2] it is easy to see that Theorem 1.1 holds if D CC C. N is a strictly 

pseudoconvex domain with C 2 boundary. 

When proving Theorem 1.1 we actually proved that 

(5.1) f ~maxRe f, O}dS = +c~. 
JM AD 

Thus, in Theorem 1.1, (1.1) could be replaced by (5.1). 
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